先验知识嵌入预训练有效提升模型性能
模型通过有效整合启动子序列、已知基因调控网络、基因家族信息和基因共表达关系四种生物学先验知识,加入人类注释信息编码,提高了对生物数据间复杂特征关联关系的理解。通过训练整合不同物种的数据信息及先验知识,GeneCompass有望提高传统生物学研究的效率和精准性为尚无法突破的复杂生命科学难题带来新的切入点。
规模效应提示模型训练捕获生物进化保守规律
中国科学院多学科交叉研究团队发现对大规模跨物种数据所获得的预训练模型对于单物种的子任务符合尺度定律(scaling law):即较大规模的多物种预训练数据量较单一物种数据量产生更优异的预训练表征,并进一步提高下游任务的性能。这一发现显示了物种间存在保守的基因调控规律,并且这些规律能够被预训练模型学习理解。这同时预示着随物种和数据的扩展,模型性能有望不断提升。
多任务性能优势展现基础大模型强大泛化能力
作为迄今为止最大规模的、具有知识嵌入的跨物种预训练生命基础大模型,GeneCompass可实现多个跨物种下游任务的迁移学习,并在细胞类型注释、定量基因扰动预测、药物敏感性分析等方面,相比已有方法取得更优性能。这充分展示了基于多物种无标注大数据预训练,再利用不同子任务数据进行模型微调的策略优势,有望成为实现基因-细胞特征相关联的各种生物问题分析预测的通用解决方案。