登录会员系统用户名  密 码     
|
当前位置:首页 >> 科普园地 >> 仿真科普知识
2018年医疗人工智能技术与应用
2018/8/31 10:07:02    新闻来源:中国仿真学会生命系统建模仿真专业委员会

医疗人工智能的价值

医疗行业长期存在优质医生资源分配不均,诊断误诊漏诊率较 高,医疗费用成本过高,放射科、病理科等科室医生培养周期长,医生资源供需缺口大等问题。随着近些年深度学习技术的不断进步,人工智能逐步从前沿技术转变为现实应用。在医疗健康行业,人工智能的应用场景越发丰富,人工智能技术也逐渐成为影响医疗行业发展, 提升医疗服务水平的重要因素。与互联网技术在医疗行业的应用不 同,人工智能对医疗行业的改造包括生产力的提高,生产方式的改变, 底层技术的驱动,上层应用的丰富。通过人工智能在医疗领域的应用, 可以提高医疗诊断准确率与效率;提高患者自诊比例,降低患者对医生的需求量;辅助医生进行病变检测,实现疾病早期筛查;大幅提高新药研发效率,降低制药时间与成本。


(一)辅助医生诊断,缓解漏诊误诊问题

医疗数据中有超过 90%的数据来自于医学影像,但是对医学影像的诊断依赖于人工主观分析。人工分析只能凭借经验去判断,容易发生误判。据中国医学会数据资料显示,中国临床医疗每年的误诊人数约为 5700 万人,总误诊率为 27.8%,器官异位误诊率为 60%

以心肌绞痛病症为例,其早期临床表现轻微,除胸口痛外,常会伴随出现肩部到手部内侧疼痛,精神焦虑,血压异常等寻常体征现象,对于门诊医生而言很容易发生误诊。对于病理医生而言,从众多细胞中依靠经验找到微小的癌变细胞难度较大,诊断错误现象时有发生。人工智能技术的出现已经在一定程度上缓解了以上问题。利用图像识别技术, 通过大量学习医学影像,人工智能辅助诊断产品可以辅助医生进行病灶区域定位,有效缓解漏诊误诊问题。


(二)提高诊断效率,弥补资源供需缺口

据统计,我国每千人平均医生拥有量仅为 2.1 人,医生资源缺口问题较为严重。

?医生资源缺口问题在影像科、病理科方面尤为严重。目前我国医学影像数据的年增长率约为 30%,而放射科医师数量的年增长率仅为4.1%。放射科医师数量的增长远不及影像数据增长。这个现象意味着放射科医师在未来处理影像数据的压力会越来越大,甚至远远超过负荷。供需不对称的问题在病理方面表现尤甚。据统计,我国病理医生缺口达到 10 万,而培养病理医生的周期却很长,这意味着此问题短期内将无法解决。面对严重的稀缺资源缺口问题,人工智能技术或将带来解决这个难题的答案。人工智能辅助诊断技术应用在某些特定病种领域,甚至可以代替医生完成疾病筛查任务,这将大幅提高医疗机构、医生的工作效率,减少不合理的医疗支出。

(三)疾病风险预警,提供健康顾问服务

多数疾病都是可以预防的,但是由于疾病通常在发病前期表征并不明显,到病况加重之际才会被发现。虽然医生可以借助工具进行疾辅助预测,但人体的复杂性、疾病的多样性会影响预测的准确程度。人工智能技术与医疗健康可穿戴设备的结合可以实现疾病的风险预测和实际干预。风险预测包括对个人健康状况的预警,以及对流行病等公共卫生事件的监控;干预则主要指针对不同患者的个性化的健康管理和健康咨询服务。

??

(四)支持药物研发,提升制药效率

利用传统手段的药物研发需要进行大量的模拟测试,周期长、成本高。目前业界已尝试利用人工智能开发虚拟筛选技术,发现靶点、筛选药物,以取代或增强传统的高通量筛选(HTS)过程,提高潜在药物的筛选速度和成功率。通过深度学习和自然语言处理技术可以理解和分析医学文献、论文、专利、基因组数据中的信息,从中找出相应的候选药物,并筛选出针对特定疾病有效的化合物,从而大幅缩减研发时间与成本。

地址:北京市海淀区学院路37号工程训练中心637室 电话:010-82317098 传真:010-82317098 
中国仿真学会 版权所有 电子邮箱:cassimul@vip.sina.com
京ICP备17016611号-1; 技术支持:北京中捷京工科技发展有限公司(010-88516981)